IIThermoAnalytics

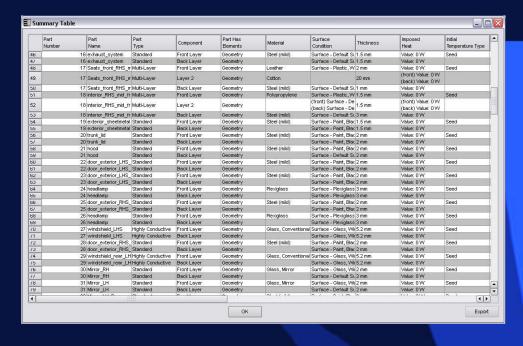
TOTAL THERMAL SOLUTIONS

RadTherm 10.1 & Future

March 2011

Agenda

- RadTherm 10.1 New Features
- RadTherm 10.1 Automation Features
 - Editable Summary Table
 - Thermal Link Wizard
- Vision
 - Advanced Thermal Solver
 - Human Thermal Comfort
 - Battery Modeling
 - Optimization


RadTherm v10.1

- Application
 - Editable Summary Table
 - BC Import & Export
 - Thermal Link Wizard
 - Generation & Visualization
 - Abaqus Export
 - Archive with Right Click
- Thermal
 - Battery Model
 - Cell & Pack Plug-in
 - Solar Apparent Area
 - Adjustable Recalculation
 - Patch View Factors
 ThermoAnalytics

- Post Processing
 - Graphics Window
 - Set Center of Rotation
 - Smooth Animation Export
- Human Thermal
 - Physiology
 - PhysioGen
 - ASHRAE 2 Node Model
 - Analysis
 - Transient Restart Options
 - Comfort Visualization

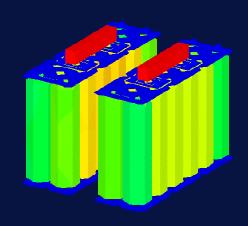
Editable Summary Table

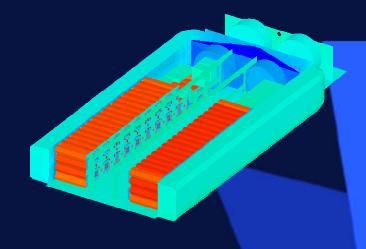
- Editable Summary Table
 - Edit BC's from spreadsheet view
 - Edit multiple parts simultaneously
 - Linked to Graphics Window
 - Advanced filtering
 - Sort on multiple columns
 - Only show columns with data
 - Import/Export

Boundary Conditions I/O

- Boundary Conditions Import & Export
 - Reuse boundary conditions for similar cases or scenarios
 - Part Name or Part ID based replacement
 - Change Summary & Log
 - Edit in Excel and re-import

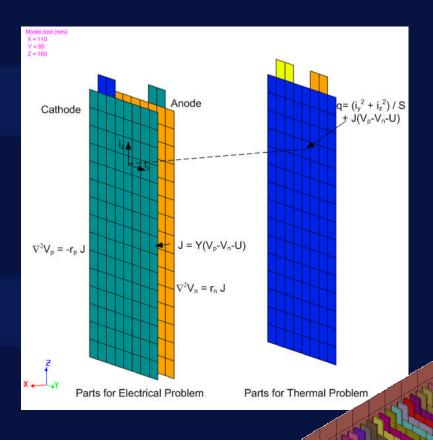
Thermal Link Wizard


- Instantly identify all Thermal Link Candidates in a model
 - Limit to Visible Parts
 - View Multiple Candidates
 - Isolate Candidates and view Thermal Link



Battery Thermal Model

- Battery Plug-in (Ajou Model)
 - Currently available as beta version
- Partnering with OEMs & Battery Suppliers on validation
 - voltage & temperature predictions
- Transient Scenarios
 - Drive Cycle
 - Hot Soak & Cold Start
 - Load Balancing
 - Cooling System Faults
- Integration of NREL equivalent circuit model for battery packs
 - Large packs, Cylindrical batteries


■ThermoAnalytics

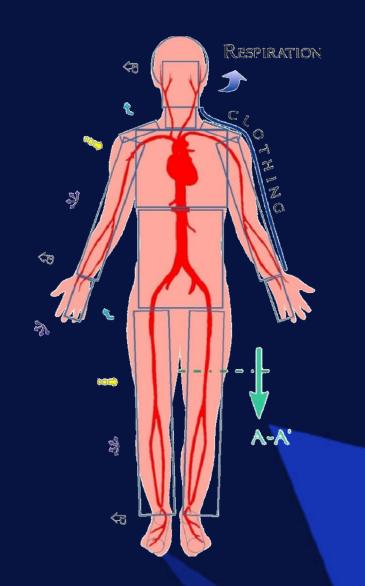
TOTAL THERMAL SOLUTIONS

Ajou Battery Model

Electrical problem

- 2D array of 1D models of current density through electrodes
- 2D description of voltage distribution on collector plates

Thermal problem


2D description of temperature distribution on electrodes

Two problems <u>coupled</u> via joule heating

- Calculated in electrical problem
- Imposed in thermal problem

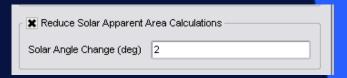
Standard Physiology

- Fiala's "Standard Man"
 - 50th Percentile Male
- Physiological Parameters
 - Segment Lengths
 - Tissue Radii
 - Thermal Properties
 - Basal Metabolic Heat Rates
 - Blood Perfusion Rates
 - Conductivity
 - Density
 - Specific Heat
 - Sensitivity Coefficients
 - Distribution Coefficients
 - Sweating, Shivering etc.
- User Defined Segments

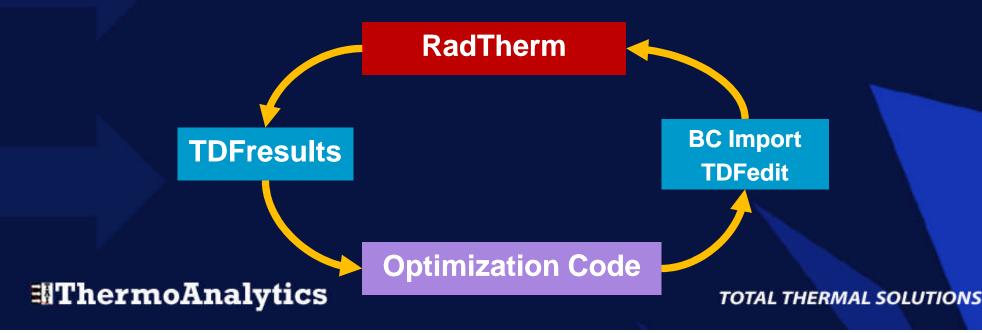
Human Physiologies

- Detailed body build from established anthropometric data
- 1st to 99th percentile
 - Independent Weight
 - Independent Height
- Adjustments
 - Segment Lengths
 - Segment Diameter
 - Fat, Muscle & Bone

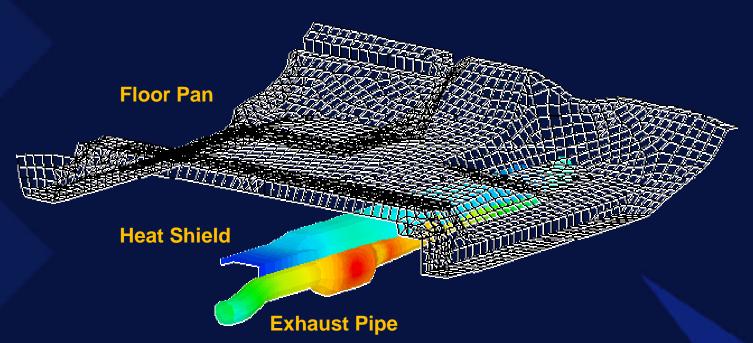
Physiogen


- Multiple humans with unique
 - Physiology & Size
 - Poses & Mesh resolution
 - Boundary conditions
- Build Physiology
 - Input: Simple Parameters
 Body Percentile, Ethnic, Gender
 - Output: Physiological Parameters
 Blood volume, surface area,
 thermal conductivity, basal
 metabolic rate, etc.

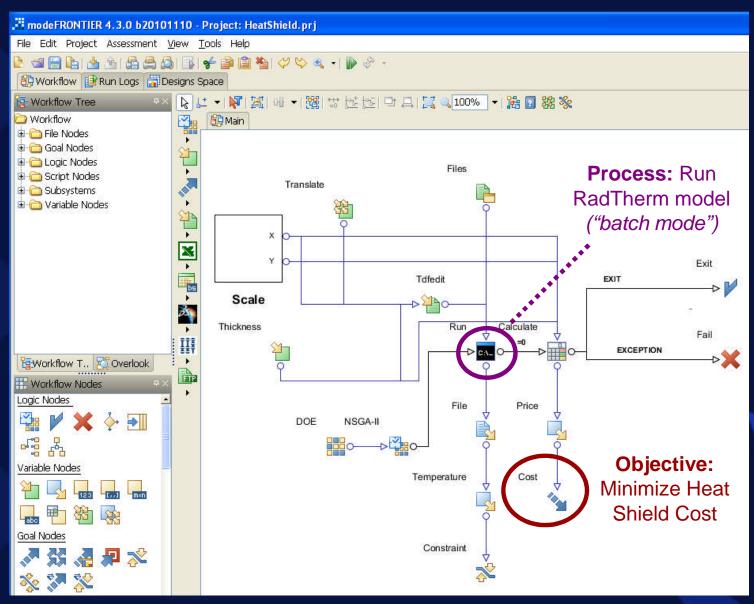
Other RadTherm 10.1 Features


Abaqus Export

- Export geometry & temperatures as .INP input file for thermal stress analysis
- Archive with Right Click
 - Windows Explorer
- Solar Apparent Area Calculation
 - Adjustable Recalculation
- Patch View Factor
 - Reduce VF calculation time for large models

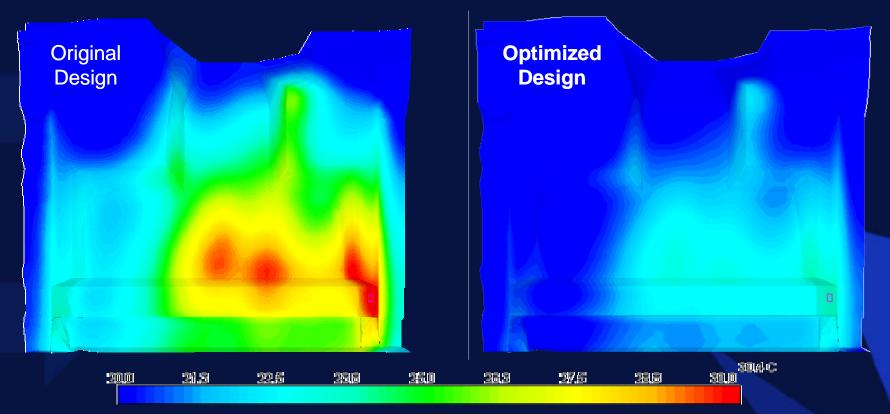

Optimization

- Optimization Codes
 - modeFRONTIER
 - iSIGHT
- Integration tools:
 - TDFedit: modify RadTherm model parameters using ASCII file
 - BC Table: modify model BC's using CSV file
 - TDFresults: writes avg, min, max, etc part temperatures



Heat Shield Optimization

- Process: Heat Shield & Floor Pan Optimization
 - Vary heat shield thickness
 - Vary floor pan insulation thickness
 - Simulate design to ensure temperature requirements have been met
 - Compute combined cost of heat shield & floor pan
- Objective: Minimize material cost while achieving safe floor pantemperatures



ModeFRONTIER Workflow

Complex Heat Shield Results

- Heat shield and floor pan insulation materials differ
- Thicknesses were optimized to meet temperature requirements while minimizing material costs
- Optimization could also include material selection, surface roughness/polish, etc.

